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Abstract
In this work, a lower bound for the ground-state energy of the Falicov–Kimball
model for intermediate densities is derived. The explicit derivation is important
in the proof of the conjecture of segregation of the two kinds of fermions in
the Falicov–Kimball model, for sufficiently large interactions. This bound is
given by a bulk term, plus a boundary term of the form α1(n)|∂�|, where �

is the region devoid of classical particles and n is the density of electrons. A
detailed proof is presented for n = 1/2, where the coefficient α1(1/2) = 10−13

is obtained, for the two-dimensional case. Although clearly not optimal in
terms of order of magnitude, this is the largest explicitly calculated coefficient
in the range of intermediate densities. With suitable modifications the method
can also be used to obtain a coefficient for all densities. That is the topic of the
last section, where a sketch of the proof for n < 1/2 is shown.

PACS numbers: 71.10.Fd, 71.10.Hf, 71.30.+h

1. Introduction

The Falicov–Kimball model [FK] was introduced to investigate metal–insulator transitions
in mixed valence compounds of rare earth and transition metal oxides. Later, it was again
considered to describe order in mixed valence systems and binary alloys. A review of exact
results for this model can be found in [GM].

The model assumes two kinds of fermions in the lattice �: classical (infinitely massive)
‘ions’ with density nc = Nc/|�| and electrons with density ne = Ne/|�|. For simplicity,
the particles are assumed to be spinless (without loss of generality, the spin variable can be
introduced later). The Falicov–Kimball Hamiltonian can be written in the second quantized
form

H = −
∑

x,y∈�

txya
†
xay + U

∑
x∈�

nxw(x) (1.1)
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where a
†
x and ax are the fermion creation and annihilation operators for the electrons in x, and

nx = a
†
xax . The variable w(x) can be either 1 or 0, according to whether the site x is occupied

by a classical particle or not. We will assume here � ⊂ Z
d .

For a bipartite lattice � = A ∪ B, Kennedy and Lieb [KL] proved that the ground state
displays crystalline long-range order at half-filling (nc + ne = 1). This result illustrates
the relevance of the model in fundamental problems in condensed matter physics, such as
understanding the formation of crystals and molecules. Also, it expected that the better
understanding of the Falicov–Kimball model will provide new insights into the Hubbard
model. And in the context of the Hubbard model, other fundamental questions can be
addressed, such as the existence of ferromagnetism in a system in which the spins are itinerant
(not localized).

A long-standing conjecture for the Falicov–Kimball model [FF] was that, for sufficiently
strong interactions, the two kinds of particles should segregate away from half-filling. This
conjecture was proved in [FLU], where it is shown that the total ground-state energy is
bounded above and below by a bulk term, plus a second term which is proportional to the
boundary of the region � devoid of classical particles. If E�,N is the ground-state energy for
N electrons,

e(n)|�| + α1(n)|∂�| � E�,N � e(n)|�| + α2(n)|∂�| (1.2)

where e(n) is the energy per site for a density n = N/|�| of free electrons in the infinite lattice
Z

d . Therefore, given that the bulk term is fixed for all configurations, lowering the energy
requires minimizing the boundary, which is accomplished by segregating the two species of
fermions from each other.

Also in [FLU], explicit coefficients α1(n) are obtained for low densities of electrons
n � |Sd |/(4π)d , where � is the domain devoid of classical particles and |Sd | is the volume of
the d-dimensional sphere, whereas α2(n) is determined for all densities. The lower bound is
obtained by considering first the U = ∞ case. Taking txy ≡ 1, the Hamiltonian acting on a
function ϕ(x) ∈ L2(�) can be written as

[h�ϕ](x) = 2dϕ(x) −
∑

e:x+e∈�

ϕ(x + e) (1.3)

where the sum is over the edges of the lattice. The eigenvalue equations are h�ϕj = ejϕj , for
j = 1, . . . , |�|. Their lower bound is derived from the inequality

E�,N − |�|e(n) � 1

(2π)d

∫
(εF − εk)

∑
j :ej >eN

1

(4d)2
|(bk, ϕj )|2 dk (1.4)

where εk = 2d − 2
∑

i cos ki . Also, the concept of the boundary vector

bk(x) = χ∂�(x) e−ikx
∑

e:x+e/∈�

e−ike (1.5)

is introduced. Therefore, the problem reduces to showing that the boundary vector has a
projection in the subspace spanned by the largest eigenvalues. The mathematical results are
bounds for the sum of the lowest eigenvalues of the Laplace operator. For the continuous
Laplace operator, one should refer to [LY].

This will be the starting point of our study here. Our goal is to obtain an explicit coefficient
for the boundary term for intermediate densities |Sd |/(2π)d < n < 1 − |Sd |/(2π)d . We are
going to obtain results for U = ∞, from which the results for finite interaction can be derived
(see [FLU]). Our main result in this limit is:
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Theorem 1.1. For d = 2 and density of electrons n = 1/2, the ground-state energy of the
Falicov–Kimball model is bounded below by

E�,N − |�|e(1/2) � α1(1/2)|∂�| (1.6)

where α1(1/2) = 10−13.

2. The boundary term for n = 1/2

2.1. Projection of the boundary vector

The goal is to prove that the boundary vector bk has a projection in the subspace spanned
by the eigenfunctions {ϕj }, ej > 2d (h�ϕj = ejϕj ). If we can prove that this projection
is proportional to the boundary for a subset (of non-zero measure) of the region in k-space
limited by the Fermi surface of n = 1/2 (εF = 2d), the boundary term can be calculated.

Expanding bk in terms of the eigenfunctions of h� we have

−
∑

j

|(ϕj , bk)|2(ej − 2d) + 2
∑

j :ej >2d

|(ϕj , bk)|2(ej − 2d) =
∑

j

|(ϕj , bk)|2|ej − 2d|

=
∑

j

|(ϕj , bk)|2 (ej − 2d)2

|ej − 2d| � ‖(h� − 2d)bk‖2

2d
.

Therefore ∑
j :ej >2d

|(ϕj , bk)|2(ej − 2d) � ‖(h� − 2d)bk‖2

4d
+

(bk, (h� − 2d)bk)

2
(2.1)

and ∑
j :ej >2d

|(ϕj , bk)|2 � ‖(h� − 2d)bk‖2

8d2
+

(bk, (h� − 2d)bk)

4d
≡ f (k). (2.2)

Suppose we can find k such that εk = 2d and ‖(h� − 2d)bk‖2 � α|∂�|, for some
constant α. For such k, we have to consider the two possible cases:

• (bk, (h� − 2d)bk) � 0
• (bk, (h� − 2d)bk) < 0.

We should only be concerned with the second case, where the negative contribution from the
second term could cancel out the boundary term. We claim that for k′ = k + (π, π, . . . , π),

εk′ = 2d, ‖(h�−2d)bk′‖ = ‖(h�−2d)bk‖ and (bk′, (h�−2d)bk′) = −(bk, (h�−2d)bk) � 0.
Indeed, if we consider the expansions bk(x) = ∑|�|

j=1 cjϕj (x) and bk′(x) =∑|�|
j=1 djϕj (x), and observing that bk′(x) = (−1)|x|+1bk(x) and ϕ|�|−j (x) = (−1)|x|ϕj (x)

we have

dj = (ϕj , bk′) =
∑

x

ϕ∗
j (x)(−1)|x|+1bk(x) = −

∑
x

ϕ∗
|�|−j (x)bk(x) = −c|�|−j . (2.3)

Therefore

‖(h� − 2d)bk′‖2 =
∑

j

|dj |2(ej − 2d)2 =
∑

j

|c|�|−j |2(2d − e|�|−j )
2 = ‖(h� − 2d)bk‖2

(2.4)

and

(bk′, (h� − 2d)bk′) =
∑

j

|dj |2(ej − 2d) =
∑

j

|c|�|−j |2(2d − e|�|−j ) = −(bk, (h� − 2d)bk)

(2.5)

where the identity ej + e|�|−j = 4d was used.
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2.2. A bound for ‖(h� − 2d)bk‖2

Now, it remains to show that the first term in the rhs of (2.2) cannot vanish for all k in the
Fermi surface. First, let us consider the case d = 2. Since

[(h� − 2d)bk](x) = −
∑

e

bk(x + e) = −e−ik·x ∑
e:x+e∈∂�

∑
x+e+e′ /∈�

e−ik·(e+e′) (2.6)

the absolute value will be given by a sum of exponentials over some of the second nearest
neighbours x + e + e

′
. The following diagrams illustrate the real part of the terms associated

with each site, for particular values of k. Note that the configuration defines which terms will
be in the sum. If we can prove, for suitable values of k, that all the terms have positive (or
negative) real part, we conclude that they are not cancelled out by each other, and a lower
bound is obtained.

For x ∈ �, let [Qx]ij = qx,ij = #{(e, e′) : e‖i, e′‖j, x + e ∈ ∂�, x + e + e′ /∈ �}. If
tr Qx 	= 0

1

2d

2d∑
i=1

∣∣[(h� − 2d)bki

]
(x)

∣∣2 �

∣∣∣∣∣∣
1

2d

2d∑
i=1

[
(h� − 2d)bki

]
(x)

∣∣∣∣∣∣
2

� 1 (2.7)

where the sum is taken over ki ∈ {(±π
2 ,±π

2

)
,
(±π

2 ,∓π
2

)}
. Therefore we can conclude∥∥(h� − 2d)bki

∥∥2 � #{x ∈ �, tr Qx 	= 0} (2.8)

for ki = (±π
2 ,±π

2

)
or

(±π
2 ,∓π

2

)
. The same kind of argument makes (2.8) valid for d = 3

and ki = (±π
2 ,±π

2 ,±π
2

)
or some vector obtained by inversion of coordinates.

On the other hand, if tr Qx = 0 and Qx 	= 0, |(h� − 2d)bk(x)|2 � 1 and

‖(h� − 2d)bk‖2 � #{x ∈ � : tr Qx = 0 and Qx 	= 0} (2.9)

for k = (0,±π). For d = 3, the analogous result would be

‖(h� − 2d)bk‖2 � 1
3 #{x ∈ � : tr Qx = 0 and Qx 	= 0} (2.10)

for ki = (
0, π

2 , π
)

or some vector obtained by permutation of the coordinates.
If there are no isolated sites in �,

#{x ∈ � : Qx 	= 0} = α|∂�| α � 1

2d
. (2.11)

The reason that we need not consider the case where some of the sites in � are isolated lies
in the fact that there is always a configuration obtained by joining this site to a larger cluster,
preserving the boundary. We only need to show that the energy of the new configuration (�′)
is lower than the original one.

If we have a cluster and a disjoint site, the Hamiltonian can be written as a direct sum

h� =
(

h1 0T

0 2d

)
(2.12)

where h1 is the Hamiltonian for the cluster. Consider now the perturbed Hamiltonian

h(λ) =
(

h1 v(λ)T

v(λ) 2d

)
(2.13)

where v(λ) = (0, . . . , 0,−λ, 0, . . . , 0), such that h� = h(0) and h�′ = h(1). We know
that the sum of first N eigenvalues (EN) is a concave function of the perturbation λ. Also,
there is a unitary transformation that takes λ → −λ, which implies that each eigenvalue is an
even function of λ. Combining these two results, we see that the sum of the eigenvalues is a
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decreasing function of λ, and E�,N � E�′,N . So, from this point on we can consider � as a
single cluster.

For simplicity, the remainder of the proof will be presented for d = 2, but the method is
clearly general for arbitrary d. The only difference lies in the choice of the vectors ki . We are
going to consider the two following possible cases:

• Case I: #{x ∈ � : tr Qx 	= 0} � α
2 |∂�|∥∥(h� − 2d)bki

∥∥2 � α
2 |∂�| for ki = (±π

2 ,±π
2

)
or

(±π
2 ,∓π

2

)
.

• Case II: #{x ∈ � : Qx 	= 0 and trQx = 0} � α
2 |∂�|∥∥(h� − 2d)bki

∥∥2 � α
2 |∂�| for ki = (0,±π).

For each of the two cases we have

f (ki) � α

24d2
|∂�|. (2.14)

Now we need to know how rapidly can f (k) vary.

2.3. A bound for |∇j f (k)|
Lemma 2.1. For f (k) defined by (2.2), the j -component of the gradient is bounded by∣∣∣∣∇j

f (k)

|∂�|
∣∣∣∣ � 10αd3. (2.15)

Proof. First, we should write

∂

∂kj

|(h� − 2d)bk(x)|2 = −i
∑

e1,e2,e3,e4

(e1 + e2 − e3 − e4)j e−ik(e1+e2−e3−e4) (2.16)

where the sum is taken over the edges such that x + e1, x + e2 ∈ ∂� and x + e1 + e3,

x + e2 + e4 /∈ �. We can bound the expression in parenthesis by 4, and the number of terms
by (2d)4. Also, the number of sites where |(h� − 2d)bk(x)|2 does not vanish is limited by
α|∂�|. Therefore∣∣∣∣ ∂

∂kj

‖(h� − 2d)bk‖2

∣∣∣∣ � α26d4|∂�|. (2.17)

The same kind of argument leads to∣∣∣∣ ∂

∂kj

(bk, (h� − 2d)bk)

∣∣∣∣ � 6αd3|∂�| (2.18)

and combining the two results we conclude the proof of the lemma. �

So, for

|k − ki| � 1

10αd3

α

25d2
= 1

10 × 24d5
(2.19)

we have
f (k)

|∂�| � α

25d2
� 1

26d3
. (2.20)

The lemma used to bound the gradient of f (k) is useful in determining a result for any
dimension. However, if we focus on determining a better coefficient for d = 2, for instance,
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we should improve inequality (2.17). Instead of using the bound (e1 + e2 − e3 − e4)j � 4, we
can sum over all possible vectors, using the real value of the expression in parenthesis. The
same can be done for (2.18). The lower bound obtained for the j -component of the gradient
of f (k) is 7α|∂�|. Therefore, it turns out that (2.20) is valid for the extended region

|k − ki| � 1

7α

α

25d2
= 1

7 × 27
. (2.21)

We should make a remark concerning the fact that we do not know in principle which value
of ki is the right one for case I. But since εk is invariant under inversion of coordinates, the result
will be the same, regardless of the choice between the neighbourhood around ki = (±π

2 ,±π
2

)
or ki = (±π

2 ,∓π
2

)

2.4. The lower bound

We are ready now to calculate the boundary term on the lower bound for the ground-state
energy. First, we should recall that

E�,N − |�|e(1/2) � 1

(2π)d

∫
(2d − εk)

∑
j :ej>2d

1

(4d)2
|(bk, ϕj )|2 dk. (2.22)

But we proved that
∑

j :ej >2d

|(bk, ϕj )|2 � f (k)|∂�| � 1

26d3
|∂�| (2.23)

in the neighbourhood of ki . We are ready now to state the preliminary result for d = 2.

Proposition 2.2. Let region I be the neighbourhood of ki = (π/2, π/2) defined by εk <

εF (1/2) and (2.21), and region II be the neighbourhood of ki = (0,±π) defined in a similar
way. A lower bound for the ground-state energy at n = 1/2 is given by

E�,N − |�|e(1/2) � |∂�|
(2π)d

1

28d4
min
I,II

∫
I,II

(2d − εk) dk = α1(1/2)|∂�| (2.24)

where α1(1/2) > 10−17.

A similar result holds for d = 3. The regions I and II will be defined as the vicinities of
the vectors ki presented in the last section. Also, we should include a factor of 1/3, to take
into account (2.10).

3. D = 2: a better result

Considering a diagram as in figure 1 for the vector ki = (k, π − k), we see that if Qx 	= 0,

tr Qx = 0 and cos 2k > 0,∣∣(h� − 2d)bki
(x)

∣∣ � cos 2k (3.1)

whereas if tr Qx 	= 0 and cos 2k < 0∑
ki

∣∣(h� − 2d)bki
(x)

∣∣ � −4 cos 2k (3.2)

where the sum is taken over ki ∈ {(k, π − k), (−k, π − k), (k,−π + k), (−k,−π + k)}.
Therefore we can extend the region of integration, as shown in figure 2. The shape of the
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�

Figure 1. Diagram of second nearest neighbours.

II

I I

II

II II

II

kx

ky

Figure 2. Fermi surface εk = 4 and extended regions of integration.

internal boundary curve is defined by the cos2 (2k) dependence. The new lower bound will be
given by

E�,N − |�|e(1/2) � |∂�|
(2π)d

1

29d4
min
I,II

∫
I,II

(2d − εk) cos2 (2kx) dk = α1(1/2)|∂�|. (3.3)

Calculating the integral we get α1(1/2) > 10−13, which proves our main result.

4. The result for n < 1/2

For simplicity, we presented the detailed proof for n = 1/2. We should stress, however, that
the method is quite general, and can be used to obtain the lower bound for the boundary term
for any density n. Taking n = N/|�|, we have an inequality which is equivalent to (2.2):

∑
j :ej >eN

|(ϕj , bk)|2 � ‖(h� − eN)bk‖2

8d2
+

(bk, (h� − eN)bk)

4d
. (4.1)

Again, if (bk, (h� − eN)bk) < 0, we take the application k′ = k + (π, π, . . . , π), and we
have εk′ = 4d − εk, ‖(h� − eN)bk‖2 = ‖(h� − e|�|−N)bk′ ‖2 and (bk′ , (h� − e|�|−N)bk′) =
−(bk, (h� − eN)bk).

Suppose we can prove ‖(h� − eN)bk‖2 � α|∂�| for some k in the Fermi surface. Then,
either

∑
j :ej >eN

|(ϕj , bk)|2 � α′|∂�|, or
∑

j :ej>e|�|−N
|(ϕj , bk′)|2 � α′|∂�|, which means that
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the boundary contribution can be calculated for density n or 1 − n. But due to particle–hole
symmetry, the boundary term should be the same for the two densities. Therefore, the problem
reduces to proving ‖(h� − eN)bk‖2 � α|∂�|.

This observation, when combined with the lower bound for the minimum of
‖(h� − eN)bk‖2 over the Fermi surface obtained in [FLU], is enough to determine the lower
bound for the boundary term. To obtain a better and explicit coefficient, however, one should
proceed like in the last sections, find vectors ki such that the function f (k) cannot vanish for
all of them in arbitrary configurations, and take the integrals over the neighbourhoods of these
points in k-space. The difference now is that we also need to perform the integration over
neighbourhoods of the vectors k′

i , situated in the image fermi surfaces of density 1 − n. Then
we take the minimum over all of these integrals, to determine the lower bound. Therefore, the
choice of the vectors ki might depend on the density, but apart from that, the method is quite
general.

5. Conclusions

We showed here how to derive the lower bound for the boundary term of the ground-state
energy of Falicov–Kimball model. The existence of the boundary term is important since
the system will try to minimize the boundary (to some extent) in order to minimize energy.
Therefore, a segregated phase, where electrons and classical particles try to occupy distinct
regions of the lattice, is obtained. When contrasted to the half-filling case, where crystalline
long-range order is observed, it might mean that the model has a first-order phase transition
when varying the chemical potentials.

Our coefficient for intermediate densities is small when compared to the upper bound
obtained in [FLU]. This means that our energy is not very sensitive with respect to the
boundary size. However, the strength of the method is that it provides an explicit coefficient.
Also, α1(n) can indeed be much smaller than α2(n), since the upper bound is saturated by
configurations with isolated sites, whereas the lower bound is not.
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